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In Mobile Edge Computing, edge servers have limited storage and computing resources that can only support
a small number of functions. Meanwhile, mobile applications are becoming more complex, consisting of
multiple dependent tasks, modeled as a Directed Acyclic Graph (DAG). When a request arrives, typically in
an online manner with a deadline specified, we need to configure the servers and assign the dependent tasks
for efficient processing. This work jointly considers the problem of dependent task placement and scheduling
with on-demand function configuration on edge servers, aiming to meet as many deadlines as possible. For
a single request, when the configuration on each edge server is fixed, we derive FixDoc to find the optimal
task placement and scheduling. When the on-demand function configuration is allowed, we propose GenDoc,
a novel approximation algorithm, and analyze its additive error from the optimal theoretically. For multiple
requests, we derive OnDoc, an online algorithm easy to deploy in practice. Our extensive experiments show
that GenDoc outperforms state-of-the-art baselines in processing 86.14% of these unique applications, and
reduces their average completion time by at least 24%. The number of deadlines that OnDoc can satisfy is at
least 1.9× that of the baselines.
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1 INTRODUCTION

With the rapid development of cloud computing, many applications are offloaded from mobile
devices to remote cloud data centers. However, the long propagation delay, limited Internet
bandwidth, and unstable networking environment make it hard to meet the Quality of Service

(QoS) requirements of some latency-sensitive applications, such as autonomous driving and
augmented reality [30]. To mitigate the latency, mobile edge computing (MEC) is proposed to
deploy relatively small-scale servers, called edge servers, at the edge of the Internet (e.g., wireless
access points) so that the resource-limited devices can leverage the computation resource nearby
with low latency [1, 28, 30]. The serverless computing [2, 16] architecture has been advocated by
major cloud providers as the service provision model in MEC, such as Alibaba EdgeRoutine [10]
and Lambda@Edge [20], which allows users to execute functions on the edge without managing
the edge servers [50]. Serverless computing has been proven more scalable, elastic, user-friendly,
and cost-efficient than the traditional IaaS (Infrastructure as a Service) architecture when
supporting MEC [33–35, 46]. However, serverless architecture in MEC introduces several new
challenges for resource management.

Limited Resources in Edge Servers: Edge servers are expected to serve a broad range of applica-
tions. However, due to the limited space and high operation cost, the edge servers are typically not
densely deployed, and each server is relatively constrained in computation and storage compared
with the remote cloud. Only a subset of the functions can be configured in each edge server. A
common practice is to use the on-demand configuration that allows different functions to share
edge servers in a fine-grained manner. When a task is dispatched to an edge server, it will first con-
figure the function to serve the task by fetching it from the cloud and preparing the environment
locally. If there are not sufficient resources to fetch the function from the cloud, a replacement
will need to be executed at the edge. If a task is dispatched to the remote cloud, the configura-
tion overhead could be avoided (or greatly reduced as no fetching time is involved) at the cost of
data transmission from mobile devices to the remote cloud. Therefore, one key challenge to adopt-
ing the serverless architecture in MEC is to play the tradeoff between the function configuration
overhead on edge servers and the data transmission cost and delay to the remote cloud.

Complex Inter-task Dependency: Modern mobile applications usually consist of multiple
dependent tasks (aka, computation modules), which can be modeled as a Directed Acyclic

Graph (DAG). For example, more than 75% of the total of 4 million jobs (applications) in
the Alibaba data trace are involved with dependent tasks [4]. Figure 1 demonstrates a video
processing application from Facebook [15] where multiple dependent tasks together complete
the video classification computation. Specifically, the tasks of an application could be dependent
due to various precedence constraints, i.e., a task cannot be started before the completion of all
its predecessors. Moreover, the cross-server data transmission will typically occur when depen-
dent tasks are placed on different servers, resulting in communication overhead. The complex
inter-task dependency and communication make resource management more challenging in
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Fig. 1. The DAG of a video processing application.

MEC. Placing the parallel tasks onto different servers could increase the execution parallelism for
faster computation, but it introduces higher communication overhead. Furthermore, a task may
have a different processing time on different edge servers (e.g., the video processing tasks run
much faster on servers with GPUs). There are tradeoffs among DAG parallelism, heterogeneous
processing time, and the cross-server communication overhead.

In this article, we consider on-demand function configuration and DAG scheduling jointly in
edge computing. We consider the MEC environment with heterogeneous edge servers and a remote
cloud. Multiple requests to various applications, with specific deadlines, arrive online in arbitrary
time and order. Our objective is to place and schedule the application tasks onto edge servers and
the remote cloud so as to satisfy as many request deadlines as possible. Our main contributions
can be summarized as follows:

— For the special case when there is only a single request, we first prove its NP-hardness. If
the edge server configuration is fixed and given, we propose an efficient algorithm, FixDoc,
which solves the problem optimally. Then, based on FixDoc, we design an approximation
algorithm named GenDoc, for the problem with on-demand function configuration. GenDoc
exploits the task dependency and configures the functions to leverage the application paral-
lelism with low configuration and communication overhead. Its additive error bound from
the optimal is proved (Theorem 2).

— For the case when multiple requests arrive online in arbitrary time and order for various ap-
plications, we derive a novel online algorithm, called OnDoc. To the best of our knowledge,
this is the first work that studies function configuration and DAG scheduling jointly in an
online manner in edge computing. OnDoc maintains multiple task scheduling lists to dramat-
ically reduce the idle time of edge servers. In addition, OnDoc is easy to implement and does
not introduce large scheduling overhead.

— We conduct extensive simulations on the trace from Alibaba consisting of 3 million appli-
cations. Experiment results show that GenDoc outperforms state-of-the-art baselines in pro-
cessing 86.14% of these unique applications, and reduces their average completion time by at
least 24% (and up to 54% ). For multiple requests, OnDoc can adapt well to different network
environments and performs consistently better than the heuristic baselines on various ex-
periment settings, e.g., the number of requests satisfying their deadline by OnDoc can be at
least 1.9× that of the baselines.

The rest of this article is structured as follows: Section 2 presents related work. Section 3 de-
fines the system model and formulates the problem. Our algorithms and theoretical analysis are
presented in Sections 4 and 5. In Section 6, we present simulation results. Finally, we conclude this
work in Section 8.
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Table 1. Comparison of Related Work

Related Work
Task

Scheduling
Task

Granularity
Function

Configuration

SDTO [7], LODCO [31], Dedas [32],
OnDisc [41], [8, 37, 43, 56, 60], and so forth.

✓ Individual ✗

Hermes [18], [19, 57, 58], and so forth. ✓ A subset of DAG ✗

TDCA [13], ITAGS [40], HEFT [44],
[3, 12, 29, 38, 47, 53, 59], and so forth.

✓ DAG ✗

SEEN [6], RL policy [14], [49], and so forth. ✗ Individual ✓

PMW [5], Hermod [17], OnMuLa [22],
Camul [42], OREO [51], CaLa [55], and so

forth.

✓ Individual ✓

FixDoc, GenDoc and OnDoc [this work] ✓ DAG ✓

2 RELATED WORK

In this section, we will introduce the progress of dependent task scheduling in different areas, in-
cluding traditional distributed systems, cloud computing, and edge computing. Task granularity
can be classified into two types: independent tasks and dependent tasks. Independent tasks are
those that do not depend on the others and have no priority constraints. Dependent tasks are
those that have priority constraints within the same application. For applications composed of
dependent tasks, the scheduling process must take into account these constraints. Also, we study
the latest research on sever configuration in edge computing. From the summary table of related
work (Table 1), we can discover that none of these works jointly consider on-demand function con-
figuration and DAG scheduling so far. In addition, although DAG scheduling has been extensively
studied in different fields, there is still much room for improvement. For example, there are few
studies on DAG scheduling with a performance guarantee, and the work in the online algorithm
does not entirely cover the actual scenarios. In this work, we study the dependent task scheduling
problem. We provide a performance-guaranteed offload strategy for single-DAG scheduling con-
figured on demand under edge computing and design a reliable online algorithm for online DAG
scheduling problems.

2.1 Scheduling of Dependent Tasks

Computation offloading and task scheduling in edge computing have been extensively studied
in recent years. Most works only consider independent task scheduling [8, 31, 37, 41, 56, 60]. As
mobile applications become increasingly complicated, a mobile application can consist of several
dependent tasks modeled as DAGs. A large number of heuristic algorithms have been proposed to
solve the task scheduling problem of static single application requests on multiple heterogeneous
processors in offline situations. The goal of the problem is usually to minimize the application
completion time [13, 44, 59]. Topcuoglu et al. [44] proposed the well-known heuristic algorithm,
called HEFT, to minimize the earliest finish time of the tasks in the application with an insertion-
based approach. The algorithm He et al. [13] proposed is based on task replication, which uses
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the computing time of the tasks in the application in exchange for communication time; the same
task can be duplicated and run on different processors. Zhao and Sakellariou [59] handle the
scheduling of multiple DAGs simultaneously in an offline environment and come up with multiple
heuristic algorithms to achieve the fairness of DAG scheduling and reduce the completion time of
all DAGs.

Also, the related problem that appears in the data center network is the problem of placing the
network function virtualization (NFV) chains [19, 57]. As the development of NFV, a linear
application diagram is placed between the fixed source and destination physical nodes to perform
a series of operations on packets sent from the source to the target. Zhang et al. [57] model the
request scheduling problem based on the key concepts from an open Jackson network and propose
an algorithm to improve resource utilization and a heuristic algorithm to reduce response latency.

Cloud-oriented applications need to be partitioned for computing when they are unloaded,
which means they need to decide which part of the tasks in the application should be uploaded to
the cloud [9, 12, 18, 40, 58]. Kao et al. [18] place tasks in applications on multiple embedded devices
in order to minimize application delay while meeting specified resource consumption. They pro-
pose a novel, fully polynomial-time approximation scheme (FPTAS). However, they do not
consider the impact of resource competition on the operation of the task. Sundar and Liang [40]
considered the execution and communication cost jointly to minimize the total cost subject to the
application deadline. By appropriately allocating the application deadline among individual tasks,
the tasks were scheduled in a greedy manner.

The application offload strategy in the cloud computing environment may not be extended to
three-layer or multi-layer edge computing systems. Due to the limited number and performance
of edge servers, the edge server cannot simultaneously support the calculation of tasks beyond its
upper limit. Therefore, many scholars research how to perform reasonable application partitioning
on terminal devices, edge servers, and clouds under different scenarios [24, 47, 54]. Yang et al. [54]
jointly considered the two-dimensional resource allocation of computing offload and computing,
and network bandwidth, and proposed an online computing partition strategy. This strategy can
effectively reduce the average completion time of unloading multiple chain structure applications.
In order to optimize the reliability of calculation unloading, Liu and Zhang [24] designed heuristic
strategies to deal with the code partitioning of individual applications. This strategy reduces the
probability of failure under the constraint of meeting task offload delay.

2.2 Sever Configuration in Edge Computing

Besides optimizing the performance with fixed server configuration, some works focused on
reconfiguration in edge computing. Hou et al. [14] proposed an online algorithm with rigorous
competitive analysis for edge server reconfiguration. From the perspective of application service
providers who need to rent CPU/storage resources on edge servers, Chen et al. [6] derived a
learning approach to maximize the benefit under a limited budget. Yang et al. [52] first studied
the joint optimization of service placement and load dispatching in the mobile cloud systems.
While in MEC, Xu et al. [51] proposed an efficient online algorithm for service placement and
task scheduling, which can reduce the computation latency significantly. Unlike the above online
settings, some works relied on an assumption of the arrival patterns of mobile applications, e.g.,
Amble et al. [5] assumed that request arrival is an independent and identically distributed process.
Wang et al. [49] considered a Markov process.

3 MODEL AND PROBLEM DEFINITION

We provide the system model and problem formulation in this section. Important notations are
listed in Table 2.
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Table 2. List of Notations

Notation Description

S The set ofm − 1 heterogeneous edge servers and a remote cloud.

Ci The capacity of server si .

di, j The data rate between servers si and sj .

V The set of all tasks.

F The set of all functions.

fj =map (vj ) The map between the task and the function.

rk The i-th task of request R = {r1, r2, . . .}.
Lk The deadline of rk .

sak
The initial server of rk .

G (Vk ,Ek ,Wk ) The task DAG of the application that the request rk calls.

vk
i The i-th task in Gk .

wk
i, j The amounts of data transferred from task vk

i to vk
j .

pk
i, j The processing time for vk

i at server sj .

FTk The completion time of request rk .

vk
entry and vk

exit The pseudo entry task and the pseudo exit task of Gk .

EST k
i, j and EFT k

i, j The earliest start time and the earliest finish time of task vk
i on server sj .

3.1 System Model

Networking model: The network consists of heterogeneous edge servers and a remote cloud,
denoted as S = {s1, s2, . . . , sm }. Each edge server si has a limited capacity Ci , which means that
the multi-dimension resources (e.g., CPU, I/O, and storage) available in si can maximally configure
a number of Ci functions (i.e., deploying functions and serving the corresponding tasks) simulta-
neously. Note that a special server sm is to represent the remote cloud, where we assume there are
enough resources to configure all functions. The data rate between servers si and sj is denoted as
di, j . We set di, j = dj,i and di, j = +∞ if i = j.

Application model: There are multiple applications in the edge computing system, each of which
is modeled by a DAG, which is represented by G (V,E,W ). Here,V is the set of nodes denoting
the tasks, E is the set of directed links defining the task dependence, and the setW denotes the
amount of required data transferred from the predecessor task to the successor on each link. For
instance, a link (vi ,vj ) with weight wi, j specifies that there is wi, j amounts of data transferred
from taskvi tovj . Hence,vj cannot start before the data transfer is finished. The computation and
communication of one task cannot overlap. If two tasks are placed at different servers sx and sy ,
the communication delay, i.e., wi, j/dx,y , needs to be taken into consideration.

Request model: Each request with some initial data arrives online at one of the edge servers
termed the initial server, which will call for an application denoted by a DAG with a deadline.
Given the DAG of a request, a task without any predecessor tasks is called the entry task and a task
without any successor is called the exit task. For ease of presentation, we let the exit (entry) tasks all
connect to a pseudo exit (entry) task, which does not take any processing time or resources, so that
there will be exactly one pseudo exit (entry) task in each DAG. The weight of links adjacent to the
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pseudo exit task is the amount of the output data produced by the exit tasks. For the pseudo entry
task, the weight of the additional links is the amount of initial data received by each entry task.
The pseudo entry and exit tasks must be processed in the initial server of the request, which means
that initial data must be transferred from and the result must be sent back to the initial server.

Application configuration model: Without loss of generality, we assume that an application
is composed of one or more tasks, and each type of task exactly maps to a function. We define
a mapping map : V → F , where V is the set of all tasks and F is the set of all functions. For
any v ∈ V and f ∈ F , map (v ) = f means that task v is to be processed by function f . To
process task vj on server si , si must have configured the corresponding function fj = map (vj )
locally. Specifically, when task vj is assigned to edge server si without function fj , si has to suffer
a configuration time, denoted as Ci,fj

, to download the function from the remote cloud and deploy
it. Each deployed function on an edge server can process one task at one moment, which means
that the queuing delay is considered. Recall that we assume the remote cloud has configured all
functions. An edge server can configure a new function directly as long as it has enough capacity.
Otherwise, a replacement will incur to release a configured function for the new one.

3.2 Problem Formulation

Here, we consider a series of requests arriving online in arbitrary time and order, denoted as R =
{r1, r2, . . .}. Each request rk calls for one application in the edge system with initial data and is
submitted to the edge system from one edge server termed the initial server sak

, which will call for
an application denoted by a DAG with a deadline Lk . Except for the parameters of the network and
the DAGs of all applications, we cannot know any information of a request before its arrival, e.g.,
the application it calls for, the amount of initial data, the initial edge server, and its deadline. Letvk

i

denote the i-th task of request rk . The processing time forvk
i at server sj ispk

i, j , which can be known
at the request’s arrival. The assumption is practical since we can estimate the processing time well
based on the previous record. Note that since the initial data of each request might be different,
the processing time of the same task from different requests of the same application might be
different. When rk arrives at server sak

in time t ↑
k

, we decide where to process each task (called task

assignment). Here, if task vk
i is assigned to server sj , we should first configure the corresponding

functionmap (vk
i ) if sj does not hold it. If a task is assigned to the remote cloud, we can process it

as soon as it arrives at the cloud. As the granularity of tasks is relatively small, we do not consider
task preemption to avoid extra processing overhead. That is to say, once one task is started, it
will be continuously processed until its completion. The completion of the exit task indicates the
completion of the request, which should be before the deadline. Under the aforementioned model,
our goal is to satisfy as many request deadlines as possible.

A simple example of our model is illustrated in Figure 2. Specifically, there is an edge-cloud
system containing three edge servers and a remote cloud. The capacity of all edge servers is set to
2, while the cloud holds all functions. Two requests, r1 and r2, call for the same application with
their own initial data arriving at server s1 and s2, respectively. We take r1 as an example, whose
tasks 1 and 2 are assigned to edge server s1, and tasks 3 and 4 to s3. s1 then needs to download
function f2 from the remote cloud and choose to drop the existing function f4. In addition, task 2
can be processed only if f2 has been deployed on s1 and its predecessor node (i.e., task 1) has been
finished.

3.3 Problem Analysis

As you can see, there are two kinds of constraints in this problem. One is the precedence
constraint, and the other is the capacity constraint. Precedence constraint means that tasks
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Fig. 2. An illustration of our model. The capacity of edge servers is set to 2. Requests r1 and r2 both request

the same application. Tasks 1 and 2 of r1 are assigned to edge server s1. Since s1 is already at its full capacity,

in order to download function f2 from the remote cloud, a decision is made to drop the existing function f4.

cannot start execution before the data of its precursors are transferred to server sj . Capacity
constraint means that tasks have to wait until server sj has spare capacity. Let us first analyze the
precedence constraint. The capacity constraint will be discussed in Section 5.2.

We define EFT k
i, j as the earliest finish time of task vk

i on server sj and EST k
i, j as the earliest

corresponding start time. As illustrated above, EFT k
i, j and EST k

i, j are two most important attributes.
Ideally, we wish the completion time of request rk , denoted as FTk , is the earliest completion time
of its pseudo exit taskvk

exit . Here, the pseudo exit taskvk
exit should be finished on the initial server

sak
. For (pseudo) entry task ventry , we have

EST k
ventry,ak

= EFT k
ventry,ak

= t ↑
k
, sak

∈ S . (1)

The precedence constraint is denoted as

EST k
i, j � max

i′ ∈pr e (i,k )
min

1≤l ≤m

⎧⎪⎨
⎪
⎩
EFT k

i′,l +
wk

i′,i

dl, j

⎫⎪⎬
⎪
⎭
. (2)

Here, pre (i,k ) represents the set of predecessor tasks of vk
i . Also, the communication delay is

included in the inequation (2) and wk
i′,i denotes the amount of data transfer from vk

i′ to vk
i . Task

vk
i will not start on server sj until all its precursor tasks vk

i′ are finished on server sl and transfer
data from server sl to server sj .

Since we do not consider task preemption, the earliest completion time of a task only needs to
consider its earliest start time and processing time. We have

EFT k
i, j = EST k

i, j + p
k
i, j . (3)

In addition, the completion time of a request can be considered as the finish time of the exit task.
So we have

FTk ≥ EFT k
vexit ,Sak

. (4)

4 ALGORITHM FOR SINGLE REQUEST

In this case, there is only one request. Our goal can be converted to minimize the application
completion time so that the request can be satisfied before its deadline. DAG scheduling for
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ALGORITHM 1: FixDoc
Input: G (V,E,w ), S with preloaded functions, start/end server sa

1 Assume v0,v1, . . . ,v J+1 are listed in topological order.

2 Define EFT k
j := ∞ for 0 ≤ j ≤ J + 1 and 1 ≤ k ≤ K .

3 Let EFT a
0 := 0.

4 for j = 1 to J do

5 for k = 1 to K do

6 if server sk without function vj then

7 pj,k := ∞.

8 for j = 1 to J + 1 do

9 for k = 1 to K do

10 EFT k
j := maxi :(vi ,vj )∈E {min1≤l ≤K {EFT l

i +
wi, j

dl,k
+ pj,k }}.

11 EFT a
J+1 is the optimal value, and the solution can be reconstructed from EFT a

J+1.

heterogeneous systems has been proved NP-hard [13], which is a special case of our problem that
the capacity of all edge servers is set uniform and the function configuration time is negligible.
Therefore, this problem is also NP-hard.

4.1 Scheduling With Fixed Configuration

In this case, we can set the configuration time as +∞. Therefore, we can only make use of the
preloaded functions on each server. We next propose our algorithm FixDoc to solve the problem
optimally.

To achieve the earliest finish time of the exit dummy task, which is equivalent to the minimum
completion time of the request G, we have to figure out the earliest finish time of its predeces-
sor tasks first. Thus, we design a dynamic programming (DP) method (defined in Algorithm 1).
Specifically, in a given edge system, a request G is initialized on edge server sa , where the two
dummy tasks (v0 andv J+1) will be placed and executed. As we defined in Section 3.3, we use EFT k

j

to denote the earliest finish time of task vj on server sk . As the processing time of task v0 is 0, we
have EFT a

0 = 0 (line 3). Note that task vj can be executed on the server sk only when the needed
function on sk is configured. We here change the value of pj,k to +∞ if there is no function vj

configured on server sk (lines 4–7). With no function configuration considered, the task execution
only needs to meet the task dependency constraints. That is to say, for each direct predecessor task
vi of taskvj , the value of EFT k

j is at least equal to the minimum sum of three parts: the finish time
of vi , the communication time between vi and vj , and the processing time of vj on sk . Following
the topological order of tasks,1 each EFT k

j only needs to be updated once and we can quickly get
the minimal completion time EFT a

J+1 (line 11). The correctness is immediate from the optimality
of the DP, and we conclude the following theorem.

Theorem 1. FixDoc solves the special case FIX optimally in O (J 2K2) time, where J and K are the

number of tasks inV and servers in S, respectively.

It is notable to emphasize that in FixDoc, one task might be placed and executed on multiple
servers repeatedly with bounded times, which is a key characteristic to design our algorithm for
the general cases with on-demand configuration.

1The topological order of a directed graph is a linear ordering of its vertices such that for every directed edge (vi , vj ) from
vertex vi to vertex vj , vi comes before vj in the ordering.
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Fig. 3. An example of necessary repeated execution.

Repeated task execution is necessary. We indicate the need for repeated execution of some
tasks through an example illustrated in Figure 3. Here, we consider two servers and three tasks,
which form a DAG as shown in the figure. Based on the initial fixed configuration, tasks 1, 2 can
be executed on s1, and 1, 3 can be executed on s2. Therefore, we have two alternative choices:
(1) execute task 1 on one server and transfer its output to the other, and (2) execute task 1 repeatedly
on each server. It is straightforward that when the communication overhead for the output of task
1 is larger than its execution (i.e., the output contains a large amount of data or the link data
rate among s1 and s2 is very small), the better choice is to execute task 1 repeatedly on each server.
Actually, redundant execution is a common method to reduce application response time [11, 13, 36].

Although repeated execution of tasks is necessary, we cannot afford the overhead of excessive
redundant task execution. In particular, we need an upper bound for the total number of task
executions among all servers, as shown in the following lemma, which we shall see later is of
great importance in the analysis of the general cases in Section 4.2.

Lemma 1. In FixDoc, the total number of task executions among all servers is bounded by γ , where

γ := min{ ( J−1)( J−2)
2 , (J − 2) · K }.

Proof. Impose a topological order of vertices of the DAG. Observe that to execute the i-th task,

at most i−1 previous tasks need to be (repeatedly) executed. This concludesγ ≤ ∑J−1
i=0 i =

( J−1)( J−2)
2 .

On the other hand, a task does not execute multiple times on the same server, so γ ≤ (J − 2) · K .
This finishes the proof. �

4.2 Scheduling With On-demand Configuration

We next study the general case of the problem where each server can configure the functions on
demand and derive our strategy called GenDoc (Algorithm 2).

Generally speaking, GenDoc takes FixDoc as a subroutine by feeding it a set of functions
preloaded greedily onto edge servers. Then, we translate the output of FixDoc to a feasible so-
lution of DAG scheduling with the on-demand configuration problem under the initial server con-
figurations, where necessary on-demand function configuration is involved. Note that function
preloading in FixDoc is conducted virtually to guide the task placement and scheduling, while
actual function configuration is performed on demand. Next, we describe GenDoc line by line in
detail.

To minimize the application completion time, we greedily execute each task vj on the server
sk that has the minimum processing time pj,k . So we design function preloading to ensure that
sk have been configured with the function vk . Recall that the task and its corresponding function
share the same notation. We first ignore the actual capacity constraint Ck , but define a virtual
capacity constraint Cvir

k
for each edge server sk (1 ≤ k < K ), calculated as follows.
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ALGORITHM 2: GenDoc
Input: G (V,E,w ), S, start/end server sa

/* The initial configuration of each edge server in S can be arbitrary, while the

remote cloud sK has configured all functions. */

1 Let Nk := {vj | k = arg mink ′ pj,k ′ } for 1 ≤ k < K .

2 Let C ′
k

be the capacity required for server sk to configure simultaneously the corresponding functions
for tasks in Nk , and set C ′ := maxk C

′
k

.

3 Cvir
k

:= max{Ck ,C
′}.

4 Let S′ := S\{sK }.
5 for j = 1 to J do

6 Let Sj := S′.
7 while S′ � ∅ do

8 for j = 1 to J do

9 sk := arg minsk ∈Sj
{pj,k }.

10 Sj := Sj\{sk }.
11 if sk ∈ S′ then

12 Preload the function for task vj on sk .

13 if sk reaches capacity Cvir
k

then

14 S′ := S′\{sk }.

15 Run FixDoc with G, sa , S with the virtual server capacities Cvir and the greedy configuration functions.

16 Execute tasks under the initial server configuration according to the order and server placement in the
solution returned by FixDoc. If this introduces waiting tasks or exceeds capacity on a server, conduct
the on-demand configuration and execute the tasks whenever the server capacity is released and
available.

Based on the greedy preloading policy, we can obtain the set of functions Nk that each edge
server sk needs to configure (line 1). We set Cvir

k
as the virtual capacity of sk so that it can config-

ure simultaneously all the functions in Nk . Then, we set C ′ := maxk C
′
k

as the maximum virtual

capacity among all edge servers, and further Cvir
k

:= max{Ck ,C
′} for each edge server (lines 2–3).

Take Cvir
k

as the capacity of each edge server sk . In each iteration of the loop (lines 7–14), we
preload all the functions one by one to edge servers with enough capacity, so that each function
map (vj ) is configured onto the server that has the minimum processing time for the corresponding
task among all the servers without map(vj ) configured. The iteration terminates when no edge
server has enough available capacity to configure any function. Note that here one function might
be configured on multiple servers and hence the corresponding task can be executed on several
candidate edge servers. Example 1 illustrates the whole process of function preloading.

Example 1 (Illustration of the Function Preloading in GenDoc). Figure 4 describes how to preload
functions on three edge servers {s1, s2, s3} with actual available capacity as C1 = 1, C2 = 2, and
C3 = 4, respectively. The application arrived at contains nine tasks, where tasks v0 and v8 are
dummy tasks. Table A presents the processing time of each task (except dummy tasks) on each
edge server. According to line 1 in Algorithm 2, functions v2 and v5 needed to be configured on
servers s1, v3, and v6 are on s2, and the remaining tasks are on s3 as shown in Table B. Thus, we
have C ′ = max {C ′1,C ′2,C ′3} = 3. Hence, the virtual capacity Cvir

k
of server sk is shown in Table C.

Then, we configure functions on each edge server until not enough virtual capacity is available.
Specifically, Table D records the result of the functions configured in each step. In the second
iteration, s2 reaches its virtual capacity after configuring functionv1, so S ′ only contains servers s1
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Fig. 4. An example of the function preloading in GenDoc.

and s3. Likewise, the configuration of functionv3 on s3 is failed due to not enough virtual capacity.
The final result of functions preloaded on each server is concluded in Table E. Note that the remote
cloud s4 has configured all functions.

Next, we call FixDoc with the inputs of the DAG G, the initial edge server sa , the server sets S
with the virtual server capacities Cvir, and the greedy configuration functions (line 15). Since it is
under the initial server configuration and possible that Cvir

k
> Ck , on-demand configuration and

waiting are needed in translating the result of FixDoc to a solution of DAG scheduling with the
on-demand configuration problem (line 16). That is to say, when the actual server capacity is not
enough to configure a function, the corresponding task should wait at the server until some other
tasks are completed and release enough capacity.

We next analyze the performance gap between GenDoc and the optimal theoretically when the
edge servers are all empty configured in the initial server configuration.

Theorem 2. Let Cmax := max1≤k≤K Ck be the maximum number of functions that an edge server

can configure. Let Rmax := max1≤j≤ J ,1≤k≤K r j,k be the maximum on-demand configuration time for

any function on any server. Define ρ1 as the ratio between the maximum transferring time (for all

tasks between any server) over Rmax , and ρ2 as the ratio between the maximum processing time (for

all tasks on any server) over Rmax . Let ALG be the completion time of the solution given by GenDoc,

and OPT be the optimal completion time. We have

ALG ≤ OPT + γ (ρ1 (Cmax + 1) + 1 + ρ2) · Rmax ,

where γ := min{ ( J−1)( J−2)
2 , (J − 2) · K } as defined in Lemma 1.

Proof. Please refer to Appendix A.1. �

Before presenting the proof, we discuss how the parameters behave in practice. Typically, the
available capacity of edge servers is not large, so Cmax = O (1). Moreover, since the on-demand
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configuration is typically much more expensive than the transferring time or processing time in
edge computing, it is usually the case that 0 < ρ1, ρ2 < 1 and are small.

4.3 Analysis of GenDoc in Practical Cases

GenDocwould perform badly when all tasks are placed and executed on one server due to its greedy
function preloading,2 which would lead to a huge configuration and waiting time. However, this
extreme case will not happen frequently in practice. Our experiments on real data traces validate
that GenDoc consistently performs well, and in particular the all-task-to-one-server scenario never
happens.

We show that under some reasonable assumption of input data, our greedy preloading of func-
tions is balanced over all servers, and this justifies why our algorithm does not suffer excessive
waiting and configuration time.

A simple assumption. We only need one simple assumption on the execution time of tasks:
for each task vj , its execution time on each server is independent and identically distributed

(i.i.d.). That is, the execution time for task vj in each server is sampled independently from a
distribution Dvj

. Note that the distribution of different tasks can be different. The following fact
is immediate from this assumption. Recall that there are J actual tasks (excluding the two dummy
tasks v0 and v J+1) and K servers.

Fact 1. For any task vj and server sk , the probability that sk takes the minimum execution time

of vj among all servers is 1
K

.

Claim 1. With probability at least 1−δ , each server has at most 2 · J
K
+ 3 ln 1

δ
functions preloaded

in the greedy procedure in GenDoc.

Proof. Please refer to Appendix A.2. �

Conclusion. By union bound and Claim 1, the probability that no server is assigned more than(
2 J

K
+ 6 ln J

)
functions is at least 1 − 1

K
. Therefore,

— when the total capacity is roughly no less than J , we may expect ALG ≤ O (1) ·OPT+O (1) ·
Rmax ;

— otherwise, due to the capacity constraint, even the optimal solution suffers too much config-
uration time, so our algorithm performs not so much worse than OPT as well.

5 ALGORITHM FOR MULITPLE REQUESTS

We have come up with an algorithm called GenDoc to solve the DAG scheduling problem in the
case of a single request. However, GenDoc is not efficient in the general practical cases where
multiple requests arrive online in arbitrary time and order. The reason is as follows. Firstly, for a
single request, there is little need to duplicate the configuration of a function. So GenDoc increases
the probability that the task be placed on the server that requires the least processing time and
ignores the possibility of duplicating the configuration of a function. However, in the situation
in which there are multiple requests, GenDoc may spend much time in configuring functions.
For example, assume that there are two servers, “A” and “B,” and each server can configure only
one function. Assume that the first request needs functions “a,” “b,” and “c.” According to the
processing time, we should configure function “a” at server “A,” configure function “b” at server
“B,” and configure function “c” at server “A.” After we configure functions “a” and “b,” due to

2This extreme case might happen when all tasks (excluding the dummy tasks) are run the fastest on exactly the same edge
server, while the edge server capacity is too small to configure multiple functions simultaneously.
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ALGORITHM 3: OnDoc

1 set Q ← ∅;
/* Thread for maintaining Q */

2 if new request r arrives then

3 l ← scheduling list of r ;

4 Q ← Q ∪ {l };
/* Thread for assigning tasks and configuring functions */

5 while Q � ∅ do

/* H consists of head of each scheduling list in Q */

6 Construct set H ;

7 We assign task v∗ to server tar (v∗)
8 Configure tar (v∗) with corresponding function before v∗ executed;

9 if ∃l ∈ Q and l = ∅ then

10 delete l from Q ;

the capacity constraint, we have to release function “a” and configure function “c” at server “A.”
Unfortunately, the second request needs function “a” again, so we have to configure a function
once more, which will cost time. Furthermore, GenDoc will not deal with the next request until
the earlier one is finished, which can bring much queuing time.

In this case, we consider there are a series of requests arriving online in arbitrary time and order,
as we defined in Section 3. Moreover, we present an online algorithm named OnDoc for it. We de-
scribe the details of OnDoc (Algorithm 3) in the rest of this section. OnDoc is a variant list scheduling
scheme, which remains the simplest and most efficient of many prevalent list scheduling schemes
of DAG scheduling. The main idea of list scheduling is to define priorities of tasks and assign tasks
to the server in priority order. In additon, we have to modify the function configuration of each
edge server simultaneously due to the limited capacity. Hence, OnDoc is composed of three parts:
priority-calculating strategy, task-assigning strategy, and function-configuring strategy. We next
present these strategies in detail.

5.1 Priority-Calculating Strategy

When addressing the DAG scheduling problem with list scheduling strategies, a useful method
that can prioritize the tasks efficiently and simply is significant. Shin et al. [39] classifies task
priorities applied by most list scheduling heuristics into three types: S-level, B-level, T-level. S-level,
called static level, is the longest path from the task to the exit task with computation cost taken
into consideration only. B-level is also calculated from bottom (exit task) to top (entry task). The
difference between S-level and B-level is that communication cost is taken into consideration by
B-level as well. T-level, namely, is the sum of computation cost and communication cost of the
longest path from the entry task to the concerned task. After computing task priorities, we can
prioritize these tasks corresponding to the decreasing (increasing) order of S-level, B-level (T-level).
However, all these task priorities are static and can only prioritize tasks from one request. The
challenge remaining is that we have to schedule tasks from multiple requests concurrently in most
cases and we cannot employ these task priorities to determine the priority of tasks from different
requests.

Figure 5 shows a DAG with four tasks, i.e.,v1,v2,v3,v4. The number on each node indicates the
computation cost required to complete the task. The number on the edge indicates the communi-
cation cost. We calculate the values of each task under three priority metrics: S-level, B-level, and
T-level.
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Fig. 5. An example of calculating priorities.

To tackle the aforementioned challenge, we maintain multiple task scheduling lists
Q = {l1, l2, ...} rather than follow the idea of list scheduling methodology to merge tasks
from all requests to construct one prioritized list. Q is the set of prioritized lists of requests. Let Q
be empty initially. When t = t ↑

k
, request rk arrives at initial server sj with deadline Lk ; we employ

the B-level as task priorities to get a scheduling list lk of rk and insert lk into Q instantly (lines
1–4 in Algorithm 3). Every time we are scheduling, we only take the head of all the scheduling
lists in Q into consideration. To choose an appropriate task to assign, we first determine the
target server based on the task-assigning strategy for all candidate tasks. Then led by the idea to
reduce the idle time of edge servers, we choose the task that can start execution at the earliest
time in its target server among all the candidate tasks to assign (lines 6–7). Each scheduling
process ends with the chosen task already starting execution in its target server, then the chosen
task is deleted from its scheduling list and the next scheduling begins. If the scheduling list
of request rk is empty or the request exceeds the corresponding deadline, we delete it from Q
(lines 9–10).

5.2 Task-Assigning Strategy

Except for the pseudo entry task, we assign each taskvk
i to the server that can finish it the earliest

time. And we call the target server of vk
i′ as tar (vk

i′ ). For ease of formula, we record the status
of edge servers all the time. For instance, we maintain a set Aj = {(v ′1, r ′1), (v ′2, r

′
2), . . . , (v ′n , r

′
n )}

(without pseudo entry task) for server sj ; when task vk
i is assigned to server sj , we insert a tuple

(i,k ) to Aj . Without loss of generality, we assume that

EFT
r ′1
v ′1, j

� EFT
r ′2
v ′2, j

� · · · � EFT
r ′n
v ′n, j

and denote Aj (m) = {(v ′1, r ′1), (v ′2, r
′
2), . . . , (v ′m , r

′
m )}. For convenience, if m ≥ |Aj |, we fill the set

up with (m − |Aj |) virtual tuples (ventry , rk ).
Then we define an indicator binary variable as follows:

xi, j =
⎧⎪⎨
⎪
⎩

0 if i = j

1 if otherwise.
(5)

Recalling the precedence constraint in Section 3.3, we can describe it in detail as

EST k
i, j � max

i′ ∈pr e (i,k )
EFT k

i′,tar (vk
i′ )
+

wk
i′,i

dtar (vk
i′ ), j

. (6)

Here, pre (i,k ) represents the set of predecessor tasks of vk
i . Also, the communication delay is

included in the inequation (6) and wk
i′,i denotes the amount of data transfer from vk

i′ to vk
i .
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The capacity constraint is

EST k
i, j � min

i′,r ′ ∈Aj (Cj )
EFT r ′

i′, j + Cj,map (vk
i ) ∗ xmap (vk

i )map (vr ′
i′ ) . (7)

As a result, EST k
i, j can be computed as below:

EST k
i, j = max

⎧⎪⎨
⎪
⎩

max
i′ ∈pr e (i,k )

EFT k

i′,tar (vk
i′ )
+

wk
i′,i

dtar (vk
i′ ), j

,

min
i′,r ′ ∈Aj (Cj )

EFT r ′

i′, j + Cj,map (vk
i ) ∗ xmap (vk

i ),map (vr ′
i′ )

⎫⎪⎬
⎪
⎭
.

(8)

Then we tentatively enumerate tasks’ EFT in each server to determine their target server. For
any task vk

i (i is not entry or exit), we have tar (vk
i ) = minsj ∈S EFT

k
i, j .

5.3 Function-Configuring Strategy

In Equation (8), when xmap (vk
i ),map (vr ′

i′ ) equals to 1, it means that we have to configure the corre-

sponding function to allow the task to begin executing. First, we have to check whether there is
enough capacity for configuration. If so, we just take up the spare space simply; if not, we need
to decide which function will be replaced. In OnDoc, to allow the configuration to start as soon as
possible, we always choose the function that can be replaced at the earliest time to drop. If there
are many candidate functions that can be replaced at the same time, we choose one uniformly
random (line 8).

6 SIMULATION

6.1 Simulation Setup

Parameter configuration. We conduct simulations in an edge-cloud cluster with five edge
servers and a remote cloud data center. Each edge server has a limited available capacity, which by
default, we set as three, and we conduct experiments to study the influence when the available ca-
pacity changes. The data transmission to the cloud suffers a long latency, which by default, set as 20
times that between two edge servers. We also study the parameter sensitivity of this ratio [27, 45].
The configuration time for each function on the edge server is set to 500 ms [48], the cloud data cen-
ter has all functions configured, and thus the configuration time can be saved there. If not specified
explicitly, the overhead of offloading a task to the remote cloud is set [100, 2000] ms [21, 23]. The
processing time in the remote cloud server is set as 0.75× (in average value) that in edge servers, as
the remote cloud typically provides more storage space and better intra-network communication
than edge servers [41].

Data trace. We conduct the simulations based on Alibaba’s trace of data analytics, which contains
3 million production jobs (called applications in this work) with the DAG dependency informa-
tion [4]. We filter out the duplicated jobs with the same DAG information and have 20, 365 unique
applications, each of which has 2–198 tasks. Specifically, more than 98% of the DAGs contain less
than 50 tasks. In addition, we scale data transmission time among edge servers and the processing
time of each task to [5, 100] ms and [10, 200] ms, respectively, so as to make it more consistent
with the characteristics of low latency in mobile edge computing.

6.2 Baselines

We compare GenDoc and OnDoc primarily with the following approaches.
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(1) Local Heuristic (Local): To verify that an application should be scheduled in the task-level
granularity instead of being treated as an indivisible task, we implement this baseline that
always places all the tasks within an edge server that can minimize the completion time. The
tasks are executed in the topological order of its DAG.

(2) Heterogeneous Earliest-Finish-Time (HEFT) [44]: HEFT is a widely adopted algorithm for
DAG scheduling. It contains two phases: in the task prioritizing phase, HEFT computes the
priority of the tasks based on their computation and communication cost; and then in the
processor selection phase, HEFT schedules the tasks according to their priority and places
each task to the server with the earliest completion time.

(3) Greedy Heuristic (Greedy): This heuristic balances the tradeoff between communication
time and task parallelism. For each task vj , the algorithm always schedules a task to the
“nearest” server with the available function capacity to minimize the communication time
from vj ’s predecessor tasks.

(4) First-Come-First-Serve (FCFS): FCFS is a popular scheduling policy that is commonly used
by the methods based on queuing theory [41]. We implement it by converting multiple task
scheduling lists to a single list with respect to the releasing order and always assign the task
in the head of the list to its target server.

Our main results can be summarized as follows:

— GenDoc can reduce 24%, 29%, and 54% of the completion time on average compared to Greedy,
HEFT, and Local, respectively.

— For all jobs, the maximum completion time required by GenDoc is less than 10s, while 24.43s,
15.89s, and 40.25s are needed under Greedy, HEFT, and Local.

— For job completion times, GenDoc is superior to all baselines on ∼86.41% of the DAGs.
— Under the default setting, the number of requests that satisfy their deadline in OnDoc is 1.9×,

51.6× that of Local and FCFS.
— The makespan of OnDoc is minimal compared to Local and FCFS.

6.3 Results for One Request

In this part, we present the experimental results on Alibaba’s production trace and dissect the
source of improvement of using GenDoc. We also conduct extensive sensitivity experiments using
three specific DAGs to study the impact of communication-computation ratio, the function config-
uration time, and the transmission overhead to remote clouds. In all cases, our algorithm GenDoc
outperforms the baselines significantly.

6.3.1 The Overall Performance. Figure 6 illustrates the overall performance of the four algo-
rithms under Alibaba’s cluster trace. Figure 6(a) shows the average job completion time of the
20, 365 DAGs of the four algorithms. GenDoc can reduce 24%, 29%, and 54% of the completion time
on average compared to Greedy, HEFT, and Local, respectively. Greedy essentially optimizes the
earliest start time of each task, while HEFT focuses on the earliest finish time of the task. For
most jobs, the processing times on different servers slightly vary, thus HEFT and Greedy have
similar performance. For all jobs, the maximum completion time required by GenDoc is less than
10 s, while 24.43 s, 15.89 s, and 40.25 s are needed under Greedy, HEFT, and Local, respectively.
There is a small set (about 24.4% in Alibaba’s trace) of jobs with many more tasks (at least 18
tasks in one DAG) than the rest that makes it difficult for Local to utilize the parallelism of
task execution and function configuration under the limited server capacity. Figure 6(b) shows
the distributions of job completion times. GenDoc is superior to all baselines on ∼ 86.41% of
the DAGs.
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Fig. 6. Completion time under Alibaba data.

Fig. 7. CDF of (a) task parallelism, (b) configuration time, (c) task processing time, and (d) communication

time.

6.3.2 Sources of Improvements. To understand why GenDoc achieves better performance than
the three baselines, we further conduct a detailed analysis for dissecting the source of GenDoc’s
performance gain. Figure 7(a) shows the average task parallelism degree during the execution of
the four algorithms, i.e., the average number of running tasks over job execution time. GenDoc
has much higher task parallelism degree than the three baselines, which runs at least four tasks
for more than 86% of the jobs. By actively offloading tasks to the remote cloud when the gain can
outweigh the transmission and configuration overhead, GenDoc can leverage the higher resource
utilization to reduce the job completion time. Note that all algorithms have the task parallelism
degree of at least 2.0. This is because the execution of a task includes the on-demand configuration
time, the task processing time, and the cross-task communication. Even for a job with a DAG of
a chain, the predecessor task’s processing and communication can overlap with the configuration
time of successor tasks.
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Fig. 8. Overall performance of different algorithms.

To understand how the algorithms play the tradeoffs among function configuration, task pro-
cessing, and inter-server communication, we decompose the job completion time into three parts,
respectively. Figures 7(b), (c), and (d) show the distribution of the three parts over the 20, 365 DAGs.
GenDoc incurs a higher communication time than the baselines, while spending less time on func-
tion configuration and task processing. Since the communication overhead in the workloads is
generally smaller than the task processing time, GenDoc leverages the heterogeneous processing
time and higher task parallelism to compensate communication overhead. Moreover, since the
functions can be configured in parallel, the higher task parallelism can also help to reduce the func-
tion configuration time. GenDoc achieves the best performance because it optimizes the scheduling
decisions in a unified framework by considering the tradeoffs among the function configuration,
heterogeneous processing time, task parallelism, inter-server communication, and offloading over-
head to the remote cloud.

6.4 Results for Multiple Requests

In this part, we first illustrate the overall performance. The result shows that OnDoc outperforms
other baselines dramatically. The number of deadlines that are satisfied is at least 1.9× that of the
baselines under default setting. Furthermore, we conduct multi-group experiments to study the
influences of different settings of various parameters (i.e., the offload overhead to the cloud and
the capacity of the edge servers).

6.4.1 The Overall Performance. Figure 8 demonstrates the performance of all algorithms on the
workloads from Alibaba. We scale the deadline of each request from 0.25× to 1.25× of the original
value in the default setting with other parameters remaining as the default value. Figure 8(a) shows
that the performance of all algorithms gets better with the deadlines increasing. Meanwhile, OnDoc
outperforms the baselines dramatically. Under the default setting, the number of requests that
satisfy their deadline in OnDoc is 1.9×, 51.6× that of Local and FCFS, respectively. Furthermore, the
makespan, the gap between the release time of the first request and the completing time of the
last completed request, of our scheduling is minimum, which is a surprising by-product shown by
Figure 8(b).

6.4.2 Sources of Improvements. To understand why OnDoc outperforms the baselines, we con-
duct some further analysis. (1) From the perspective of the parallelism between tasks from differ-
ent or even the same request, Figure 9(a) demonstrates that OnDoc can exploit the parallelism well.
Task parallelism is defined as the average number of running tasks at every moment. Figure 9(a)
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Fig. 9. Task parallelism and # of function configuration of different algorithms.

Fig. 10. The proportion of requests satisfying deadlines with different settings.

depicts that task parallelism of OnDoc is the highest. It means that OnDoc utilizes the resources of
edge servers to process more tasks concurrently than the baselines. Hence, OnDoc makes use of
computing resources more sufficiently. Meanwhile, it exploits the parallelism between tasks better.
(2) Configuration time is relatively larger compared with processing time and communication cost
of data transfer between edge servers. The communication time from edge servers to the remote
cloud is the same order of magnitude as configuration time if the amount of transferring data is
large. Thus, an appropriate tradeoff between the long distance communication and configuration
plays a significant role. Figure 9(b) shows that the number of function configurations by OnDoc is
dramatically less than the baselines. Further analysis, which depicts 39.5% of all tasks are assigned
to the remote cloud, illustrates that OnDoc utilizes the remote cloud to decrease the configuration
cost without inducing notable communication cost. Almost all the tasks assigned to remote cloud
request for a relatively small amount of data, which means that OnDoc assigns tasks with a large
amount of input data to edge servers to avoid notable communication delay. Meanwhile, OnDoc
employs cloud to mitigate edge servers’ pressure to avoid repeating configurations.

6.4.3 Sensitivity Analysis. We also conduct abundant experiments to investigate the impact of
different settings. Figure 10(a) demonstrates the performance of all algorithms under different
capacity settings. OnDoc and Local are affected significantly because more capacity means more
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computing resources. The number of function replacing decreases due to the increase in capacity.
On the one hand, some repeating configurations are avoided. On the other hand, more capacity
can support more task execution simultaneously, which can exploit the parallelism between tasks
better. To study the impact of communication time to the remote cloud, we scale it from 0.05×
to 2.5× the default value. Figure 10(b) illustrates when communication time is 0.05×, OnDoc can
finish all requests before their deadline. Since the communication time to cloud equals to that
between edge servers, the cloud can provide powerful computing resources (i.e., infinite capacity,
no function configuration time, faster task processing) without inducing more communication
cost than edge servers. It is easily understood that Local is not affected by the overhead for it only
uses edge servers. FCFS performs badly and is not sensitive to the above parameters since its task
assignment policy is the main bottleneck constraining performance. The requests needing large
processing time will block the execution of all requests that released after it.

7 DISCUSSION

This work jointly addresses the problem of dependent task placement and scheduling with on-
demand function configuration on edge servers, aiming to meet as many deadlines as possible.
Another practical challenge in serverless computing is how to mitigate cold starts. This challenge
becomes more complex when the application involves multiple dependent tasks, especially in
serverless edge computing with multiple servers. While we can treat the configuration time as
the cold start latency in serverless computing, it is fixed at 500 ms, which does not accurately
represent the real-world cold start scenario. In serverless edge computing, the cold start time may
vary significantly due to the different computing capabilities of each edge server and the different
programming languages of each function. We intend to explore the container scheduling problem
in serverless edge computing, specifically focusing on the variation in cold start latency. This will
be the focus of our future work.

8 CONCLUSION

In this article, we jointly consider the problem of dependent task placement and scheduling with
on-demand function configuration on servers. Our objective is to meet as many request deadlines
as possible. We first consider the situation where there is only one request. Then, we derive a novel
approximation algorithm, called GenDoc, and prove its additive error from the optimal solution.
Based on the real data trace from Alibaba, extensive simulations show that our algorithm can run
efficiently and significantly reduce the completion time under various scenarios compared with
state-of-the-art heuristic baselines. Then we propose an efficient heuristic algorithm, named OnDoc,
to solve the problem where requests for some application with specific deadlines and initial data
arrive online in arbitrary time and order. Specifically, OnDoc is based on list scheduling schemes
and can be implemented easily in practice. In addition, a significant amount of simulations validate
that OnDoc has a stable and superior performance compared with the baselines.

A APPENDIX

A.1 Proof Of Theorem 2

Proof. Let ALG1 be the cost given by FixDoc, and let ALG2 be the cost of converting the solu-
tion given by FixDoc to the feasible solution (line 14). Then ALG ≤ ALG1 + ALG2.

We start with bounding at ALG1. Let P be the input instance of the problem DAG scheduling
with on-demand configuration, and let P ′ be the FIX instance generated by FixDoc. Let OPT′ be
the optimal solution returned by FixDoc (the optimality is proved in Theorem 1), on the instance
P ′. Then ALG1 = OPT′.
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Next, we give an upper bound of OPT′ with respect to OPT. To do so, we convert an optimal
solution Q for P to a feasible solution Q ′ for P ′, such that f (Q ′) ≤ f (Q ) + γ ρ1 (Cmax + 1) · Rmax .
By the optimality of OPT′, we conclude OPT′ ≤ OPT + γ ρ1 (Cmax + 1) · Rmax .

We construct Q ′ by first ignoring the configuration operations in Q . Then we simulate other
operations of Q in Q ′. Observe that operations other than the configuration in Q , together with
the DAG, define a mapping from each task to a subset of servers that the task is to be executed.
For each taskvj that is to be executed on server sk inQ , if sk is the cloud, we also letvj execute on
sk . This does not introduce additional cost for such execution on Q ′ compared with Q . Otherwise,
let s ′ be the server that the processing time of vj is minimized, and in Q ′ we first execute vj on s ′

and then transfer the outcome to sk . Suppose inQ , there are x predecessors ofvj that are executed
on servers other than sk , and there are y on sk . Then in Q ′ we suffer at most (y + 1) additional
transferring costs of tasks, which is bounded by (y + 1) · ρ1 · Rmax . Observe that y ≤ Cmax, so
ρ1 (y + 1) · Rmax ≤ ρ1 · J · Rmax .

Therefore, by Lemma 1, we have that ALG1 = OPT′ ≤ OPT + γ ρ1 (Cmax + 1) · Rmax .
Then we analyze ALG2. By Lemma 1, there are at most γ on-demand configuration operations

needed for all tasks. Also, a task that is executed without waiting in FixDoc may need to wait
in the solution of DAG scheduling with on-demand configuration problem because the virtual
capacity may be bigger than the actual capacity. However, since there are γ tasks that can execute,
the completion time suffers at most γ times the maximum processing time, which is γ ρ2 · Rmax .
Therefore, ALG2 ≤ γ (1 + ρ2) · Rmax .

In conclusion, we have ALG ≤ OPT + γ (ρ1 (Cmax + 1) + 1 + ρ2) · Rmax . This completes the
proof. �

A.2 PROOF OF CLAIM 1

Proof. By Fact 1, for any task vj , the probability that a fixed server sk has the minimum execu-
tion time for task vj is 1

K
. Therefore, for each server, the expected number of functions assigned

to it is J
K

.
Fix a server sk . Let Xi be the random variable that indicates whether the i-th task is assigned

to sk . That is, Xi = 1 if the i-th task is assigned to sk , and Xi = 0 otherwise. Observe that Xi ’s are
independent, and Pr[Xi = 1] = 1

K
. Let X :=

∑
1≤i≤ J Xi . Then E[X ] = J

K
. We do a case analysis

with respect to E[X ], which is J
K

.

— E[X ] ≤ 3 ln 1
δ

. By Chernoff bound, for λ ≥ 1,

Pr[X ≥ (1 + λ) · E[X ]] ≤ exp

(
−λ · E[X ]

3

)
.

Taking λ := 3 ln 1
δ
· J

K
≥ 1, we get Pr[X ≥ J

K
+ 3 ln 1

δ
] ≤ δ .

— E[X ] > 3 ln 1
δ

. By Chernoff bound, for 0 ≤ λ ≤ 1,

Pr[X ≥ (1 + λ) · E[X ]] ≤ exp

(
−λ

2 · E[X ]

3

)
.

Taking λ :=
√

3 ln 1
δ
· J

K
≤ 1, we have Pr[X ≥ 2 · J

K
] ≤ δ .

Combining the two cases concludes the claim. �
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